research

Secondary Fusion Reactions in the Mechanical Adiabatic Compression of a Dense Plasma

Abstract

We consider fusion processes initiated by the rapid adiabatic compression by a piston of a deuterium plasma contained in a well‐insulated chamber. To exploit the n^2 factor in the fusion reaction rate, we consider one mole of deuterium which, at ambient temperature and pressure, provides a particle density of ~ 10^19 cm^‐3. The reaction rate is enhanced by the application of magnetic and electric fields to reduce the number of degrees of freedom of the gas, thereby lowering its heat capacity and producing a higher temperature increase for a given energy input. Previous studies have shown that the combination of adiabatic operation, high particle density and reduced degrees of freedom can result in appreciable fusion rates at temperatures lower than those in magnetic confinement experiments. The prior work considered only primary D-D fusion reactions while the present work also includes D-T reactions. Conditions of energy-break-even and excess energy release were found at temperatures of the order of 10^6 K

    Similar works