Etude des dispositifs à dopage électrostatique et des applications dans les technologies FD-SOI

Abstract

Fully Depleted SOI (FD-SOI) is an excellent alternative of conventional Complementary Metal Oxide Semiconductor (CMOS) technology which is leading the semiconductor industry. FD-SOI offers low-power consumption and improved electrostatic control for MOS transistors even in very advanced nodes (14 nm and 28 nm). FD-SOI transistors feature nanometer thickness and length which bring rather particular operation mechanisms and characteristics. This work describes the state-of-the-art and the assets of FD-SOI components. The Hocus-Pocus (HP) diode is one example of the innovative devices made possible by the unrivalled flexibility of FD-SOI technology. By modifying the type of electrostatic doping, N or P, a single device can be reconfigured as a virtual P-N diode, a virtual Esaki diode, a semi-virtual diode, a P-I-N diode, a TFET or a band-modulation FET. Each configuration works as a physically doped device with peculiar behavior induced by the dynamic change of doping concentration. Original applications such as lifetime extraction and virtual Esaki diode are explored. The Z2-FET (Zero subthreshold slope and Zero impact ionization) is a striking application of HP diode thanks to attractive characteristics (sharp switch, low leakage current, adjustable triggering voltage and high current ratio ION/IOFF). In this work, we focus on a capacitorless Dynamic Random Access Memory (1T-DRAM) and a fast logic switch. The DC and transient operation mechanisms as well as the device performance are investigated in details with TCAD simulations and validated with systematic experimental results.La récente technologie Fully Depleted SOI (FD-SOI) est une excellente alternative à la technologie conventionnelle CMOS (Complementary Metal Oxide Semiconductorqui a mené le développement incessont des circuits intégrés. FD-SOI offre une faible consommation d'énergie et un contrôle électrostatique amélioré pour les transistors MOS, même dans les nœuds très avancés (14 et 28 nm). En raison de leurs dimensions nanométriques, aussi bien en épaisseur qu’en longueur, les transistors FD-SOI présentent des mécanismes de fonctionnement et des caractéristiques très spécifiques. L’état de l’art du FD-SOI est décrit en insistant sur les atouts des composants, les effets physiques particuliers et les techniques de caractérisations dédiées. La diode Hocus-Pocus (HP) est un exemple de dispositif innovant rendu possible par la flexibilité sans égal de la technologie FD-SOI. En modifiant le type de dopage électrostatique, N ou P, un dispositif peut être reconfiguré en diode P-N virtuelle, diode Esaki virtuelle, diode semi-virtuelle, diode P-I-N, TFET ou FET à modulation de bande. Chaque configuration fonctionne comme un dispositif physiquement dopé. Les aspects inédits découlent d'un changement dynamique de la concentration des porteurs. Des applications originales telles que l'extraction de la durée de vie des porteurs et la diode virtuelle Esaki sont explorées. Le Z2-FET (Zero subthreshold slope and Zero impact ionization) est un dispositif particulièrement prometteur en raison de ses caractéristiques attrayantes (commutation abrupte, faible courant de fuite, tension de déclenchement réglable et rapport de courant élevé ION/IOFF). Dans ce travail, nous nous concentrons sur une mémoire dynamique sans capacité (1T-DRAM) et un interrupteur logique rapide. Les mécanismes de fonctionnement en courant continu et transitoire ainsi que les performances du dispositif sont étudiés en détail à l'aide de simulations TCAD et validés à l'aide de résultats expérimentaux systématiques

    Similar works