Simulation moléculaire d'électrolytes aqueux dans les carbones nanoporeux : énergie bleue et désalinisation de l'eau

Abstract

When fresh river water mixes with salty sea water, a large amount of energy is lost. Conversely, the desalination of seawater for the production of drinking water requires very large amounts of energy. A new approach has been proposed in 2009 to harvest this "blue energy", thanks to the charge/discharge of electrodes in electrolytes with high/low salt concentration. The use of nanoporous carbon electrodes seems promising, but the traditional models (such as Poisson-Boltzmann) used to determine the relevant quantities do not apply in this case where molecular interactions play an essential role. We overcome this difficulty by performing molecular dynamics simulations of nanoporous carbon electrodes in the presence of an aqueous electrolyte. We evaluate the electrical capacity and the amount of ions adsorbed inside the electrodes as a function of the electrolyte composition and its concentration. In addition, these simulations allow us to understand the microscopic mechanisms leading to the storage of the charge, the effect of the structure of the carbon electrode, the salt concentration in the electrolyte and the chemical nature of the salt.Lors du mélange de l'eau douce des rivières avec l'eau salée de la mer, une quantité considérable d'énergie est dissipée. Plusieurs procédés sont actuellement à l'étude pour parvenir à exploiter cette énergie bleue (Blue Energy). Inversement, la désalinisation de l'eau de mer pour la production d'eau potable nécessite de très grandes quantités d'énergie. Depuis la proposition en 2009 d'une nouvelle approche pour parvenir à ces objectifs, grâce à des cycles thermodynamiques reposant sur la charge/décharge d'électrodes à forte/faible concentration en sel, expérimentateurs et ingénieurs ont essayé d'améliorer le procédé. Dans ce contexte, l'utilisation d'électrodes nanoporeuses de carbone semble une piste très prometteuse. Un défi de taille reste à relever pour déterminer les quantités pertinentes (capacité électrique et quantité de sel adsorbé en fonction de la composition de l'électrolyte et de sa concentration). En effet, les modèles traditionnels (Poisson-Boltzmann, etc) ne peuvent pas être utilisés dans ce cas où les interactions au niveau moléculaire jouent un rôle essentiel. Nous surmontons cette difficulté grâce aux simulations de dynamique moléculaire, qui permettent également de comprendre les mécanismes microscopiques à l'origine des propriétés observées. Nous étudions également l'influence de la structure microporeuse de l'électrode de carbone ainsi que l'effet de la nature du sel chimique

    Similar works

    Full text

    thumbnail-image

    Available Versions