Volcanic plumes produced by explosive eruptions represent a major threat in areas located near volcanoes. Physical models have been developed over the past forty years with an aim of better understanding these eruptions and assessing associated hazards. To test these models, we need robust and detailed field data from past and historical eruptions at active volcanoes. In this PhD work, we revisit the Plinian eruptive history of the Mount Pelée volcano in Martinique (Lesser Antilles) for the last 24,000 years. Our results combining new extensive field studies and carbon-dating measurements allow us to establish a new chronology of past eruptions, consistent with volcanic deposits identified in a deep-sea sediment core. We then reconstruct the dynamical evolution of the newly discovered eruptions of Bellefontaine (13,516 years cal BP), Balisier (14,072 cal BP), Carbet (18,711 cal BP) and Étoile (21,450 cal BP), whose great interest stems from their unusual southward dispersal axis encompassing areas that are considered to be safe in current hazard maps. The strong similarities observed between all documented Plinian eruptions of Mount Pelée volcano allow us to draw an accurate picture of the Plinian eruptive scenario most likely to occur in the future. This scenario may include a column collapse and the production of deadly pyroclastic density currents; we thus upgrade a 1D physical model of volcanic plume in order to improve its predictions. We first study the impact of the total grain-size distribution on the transition from a stable Plinian plume to a collapsing fountain. The effect of wind is then taken into account using laboratory experiments simulating turbulent jets rising in a windy environment. This new theoretical model, validated by laboratory experiments, is consistent with field data from several major historical Plinian eruptions. We then study the southward dispersal axis of the Bellefontaine and Balisier eruptions using a 2D physical model, in order to better understand this unusual dispersion towards Fort-de-France, capital of Martinique. Our results allow identifying peculiar atmospheric circulations associated to a modification of the subtropical jet-stream path, thus producing northerly winds over Martinique and spreading tephra towards the most populated areas of the island. This integrated approach, combining field studies, theoretical predictions and laboratory experiments, allows us to build a new volcanic hazard map for Martinique by taking into account for the first time the Plinian eruptions of the Mount Pelée volcano of the last 24,000 years, together with monthly variability of atmospheric winds.Les panaches volcaniques produits par les éruptions explosives représentent un aléa majeur dans les zones à proximité de volcans. Les modèles physiques développés ces quarante dernières années ont eu pour but de mieux comprendre ces éruptions et de quantifier les aléas associés. Les tests de robustesse de ces modèles prédictifs doivent reposer sur des données de terrain précises et détaillées sur les éruptions passées des volcans actifs. Nous proposons dans cette thèse de revisiter l’histoire éruptive plinienne de la montagne Pelée en Martinique (Petites Antilles) sur les vingt-quatre derniers milliers d’années. Nos résultats combinant travaux de terrain et datations au 14C nous permettent d’établir une nouvelle chronologie des éruptions passées en accord avec les observations réalisées sur un carottage des fonds sous-marins. Nous reconstruisons par la suite l'évolution dynamique des éruptions nouvellement découvertes de Bellefontaine (13 516 ans cal A.P.), Balisier (14 072 cal A.P.), Carbet (18 711 cal A.P.) et Étoile (21 450 cal A.P.) dont le grand intérêt réside dans leur axe de dispersion vers le sud, inhabituel et englobant des zones considérées comme sécurisées sur les cartes d’aléa actuelles. Les fortes similitudes observées entre toutes les éruptions pliniennes documentées de la montagne Pelée permettent de dresser un portrait du scénario éruptif le plus susceptible de se produire dans le futur. Ce scénario pouvant inclure un effondrement de la colonne éruptive et la production de coulées de densité pyroclastiques, nous modifions un modèle physique 1D de panache volcanique afin d'en améliorer les prédictions. Nous étudions dans un premier temps l'impact de la distribution de taille des fragments volcaniques sur la transition d’une colonne plinienne stable à une fontaine en effondrement. L'effet du vent est ensuite pris en compte grâce à des expériences en laboratoire inédites permettant de simuler des jets turbulents se formant dans un environnement soumis au vent. Nous proposons ainsi un nouveau modèle théorique validé par les expériences qui remet en cohérence les données de plusieurs éruptions pliniennes historiques majeures. Nous étudions ensuite la dispersion des cendres volcaniques lors des éruptions de Bellefontaine et Balisier à l'aide d'un modèle physique 2D pour comprendre l'origine de leur direction préférentielle vers le sud, et donc vers Fort-de-France, chef-lieu de la Martinique. Nos résultats permettent d’identifier des contextes atmosphériques particuliers durant lesquels le trajet du « jet-stream » subtropical est modifié, produisant alors des vents venant du nord sur la Martinique et pouvant disperser des cendres volcaniques sur les zones les plus peuplées. Cette approche intégrée, mêlant études de terrain, simulations numériques et expériences en laboratoire, nous permet alors de dresser une nouvelle carte d’aléa volcanique pour la Martinique considérant pour la première fois les éruptions pliniennes passées de la montagne Pelée depuis 24 000 ans, ainsi que la variabilité mensuelle des vents atmosphériques