Photoacoustic imaging is a functional technique based on the creation of acoustic waves from tissues excited by an optical source (laser pulses). The illumination of a region of interest, with a range of optical wavelengths, allows the discrimination of the imaged media. This modality is promising for various medical applications in which growth, aging and evolution of tissue vascularization have to be studied. Thereby, photoacoustic imaging provides access to blood oxygenation in biological tissues and also allows the discrimination of benign or malignant tumors and the dating of tissue death (necrosis).The present thesis aims at developing a multispectral photoacoustic image processing chain for the calculation of blood oxygenation in biological tissues. The main steps are, first, the data discrimination (clustering), to extract the regions of interest, and second, the quantification of the different media in these regions (unmixing).Several unsupervised clustering and unmixing methods have been developed and their performance compared on experimental multispectral photoacoustic data. They were acquired on the experimental photoacoustic platform of the laboratory, during collaborations with other laboratories and also on a commercial system. For the validation of the developed methods, many phantoms containing different optical absorbers have been produced. During the co-supervision stay in Italy, specific imaging modes for 2D and 3D real-time photoacoustic imaging were developed on a research scanner. Finally, in vivo acquisitions using a commercial system were conducted on animal model (mouse) to validate these developments.L'imagerie photoacoustique est une modalité d'imagerie fonctionnelle basée sur la génération d'ondes acoustiques par des tissus soumis à une illumination optique (impulsion laser). L'utilisation de différentes longueurs d'ondes optiques permet la discrimination des milieux imagés. Cette modalité est prometteuse pour de nombreuses applications médicales liées, par exemple, à la croissance, au vieillissement et à l'évolution de la vascularisation des tissus. En effet, l'accès à l'oxygénation du sang dans les tissus est rendu possible par l'imagerie photoacoustique. Cela permet, entre autres applications, la discrimination de tumeurs bénignes ou malignes et la datation de la mort tissulaire (nécrose).Ce travail de thèse a pour objectif principal la construction d'une chaîne de traitement des données photoacoustiques multispectrales pour le calcul de l'oxygénation du sang dans les tissus. Les principales étapes sont, d'une part, la discrimination des données (clustering), pour extraire les zones d'intérêt, et d'autre part, la quantification des différents constituants présents dans celles-ci (unmixing). Plusieurs méthodes non supervisées de discrimination et de quantification ont été développées et leurs performances comparées sur des données photoacoustiques multispectrales expérimentales. Celles-ci ont été acquises sur la plateforme photoacoustique du laboratoire, lors de collaborations avec d'autres laboratoires et également sur un système commercial. Pour la validation des méthodes développées, de nombreux fantômes contenant différents absorbeurs optiques ont été conçus. Lors du séjour de cotutelle de thèse en Italie, des modes d'imagerie spécifiques pour l'imagerie photoacoustique 2D et 3D temps-réel ont été développés sur un échographe de recherche. Enfin, des acquisitions in vivo sur modèle animal (souris) au moyen d'un système commercial ont été réalisées pour valider ces développements