Implementation of the crustal scarcity indicator into life cycle assessment software

Abstract

This report provides a detailed description of how the crustal scarcity indicator (CSI) is\ua0implemented into the life cycle assessment (LCA) software OpenLCA. The original\ua0characterization factors for the CSI, called crustal scarcity potentials (CSPs), were designed to be\ua0paired with life cycle inventory data formulated as the amount (mass) of elements extracted from\ua0the crust. However, some inventory data is not formulated in terms of mass of elements extracted.\ua0For example, data in the Ecoinvent database – the world’s largest LCA database – can also be\ua0expressed in terms of the amount of mineral extracted, the amount of rock extracted, or the amount\ua0of ore extracted. In order to implement the CSI into OpenLCA in a way that captures such nonelement\ua0flows, we construct five categories of inventory data for material flows extracted from the\ua0crust. Type A flows are flows of elements, such as lead or tin, which the original CSPs can be paired\ua0with. Type B flows are flows of minerals, such as kieserite or stibnite. Type C flows are flows of\ua0rocks and groups of minerals, such as basalt or olivine. Type D flows are ores, like copper ore. Type\ua0A flows are paired with the CSPs of the respective element types. However, for type B, C and D\ua0flows, new CSPs were calculated based on their respective content of different elements. These new\ua0CSPs can be found in Appendix A-D. In addition, type E flows are those that are too vaguely\ua0formulated in the Ecoinvent database, for example as general metal or ore, making it impossible to\ua0derive CSPs. In the concluding discussion, we show that this implementation gives the CSI a wider\ua0coverage of different inventory flows than other existing mineral resource impact assessment\ua0methods implemented in different packages for OpenLCA. The implementation might thus be\ua0considered a guidance for a more all-encompassing implementation of other mineral resource\ua0impact assessment methods as well

    Similar works