Point de vue maxiset en estimation non paramétrique

Abstract

In the framework of a wavelet analysis, we study the statistical meaning of many classes of procedures. More precisely, we aim at investigating the maximal spaces (maxisets) where these procedures attain a given rate of convergence. The maxiset approach allows to bring theoretical explanations on some phenomena observed in the practical setting which are not explained by the minimax approach. Indeed, we show that data-driven thresholding rules outperform non random thresholding rules. Then, we prove that procedures which consist in thresholding coefficients by groups, as tree rules (close to Lepski's rule) or block thresholding rules, are often better in the maxiset sense than procedures which consist in thresholding coefficients individually. Otherwise, as many Bayesian rules built on heavy tailed densities, classical Bayesian rules built on Gaussian densities with large variance are proved to have maxisets which coincide with hard thresholding rules ones and to have very good numerical performances.Dans le cadre d'une analyse par ondelettes, nous étudions les propriétés statistiques de diverses classes de procédures. Plus précisément, nous cherchons à déterminer les espaces maximaux (maxisets) sur lesquels ces procédures atteignent une vitesse de convergence donnée. L'approche maxiset nous permet alors de donner une explication théorique à certains phénomènes observés en pratique et non expliqués par l'approche minimax. Nous montrons en effet que les estimateurs de seuillage aléatoire sont plus performants que ceux de seuillage déterministe. Ensuite, nous prouvons que les procédures de seuillage par groupes, comme certaines procédures d'arbre (proches de la procédure de Lepski) ou de seuillage par blocs, ont de meilleures performances au sens maxiset que les procédures de seuillage individuel. Par ailleurs, si les maxisets des estimateurs Bayésiens usuels construits sur des densités à queues lourdes sont de même nature que ceux des estimateurs de seuillage dur, nous montrons qu'il en est de même pour ceux des estimateurs Bayésiens construits à partir de densités Gaussiennes à grande variance et dont les performances numériques sont très bonnes

    Similar works