Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver

Abstract

In this study, the CasRx system was demonstrated to efficiently and functionally knock down genes related to metabolism functions, including Pten, Pcsk9 and lncLstr, in mouse hepatocytes. CasRx-mediated simultaneous knockdown of multiple genes was also achieved by sgRNA arrays, providing a useful strategy to modulate complex metabolism networks. Moreover, the AAV (adeno-associated virus)-mediated delivery of CasRx and Pcsk9 sgRNAs into mouse liver successfully decreased serum PCSK9, resulting in significant reduction of serum cholesterol levels. Importantly, CasRx-mediated knockdown of Pcsk9 is reversible and Pcsk9 could be repeatedly down-regulated, providing an effective strategy to reversibly modulate metabolic genes. The present work supplies a successful proof-of-concept trial that suggests efficient and regulatory knockdown of target metabolic genes for a designed metabolism modulation in the liver

    Similar works