The microscopic properties of hot and dense plasmas stays a field essentially studied thanks to classical theories like the One Component Plasma, models which rely on free parameters, particularly ionization. In order to investigate these systems, we have used, in this PhD work, a semiclassical model, without free parameters, that is based on coupling consistently classical molecular dynamics for the nuclei and orbital free density functional theory for the electrons. The electronic fluid is represented by a free energy entirely determined by the local density. This approximation was validated by a comparison with an ab initio technique, quantum molecular dynamics. This one is identical to the previous except for the description of the free energy that depends on a quantum-independent-particle model. Orbital free molecular dynamics was then used to compute equation of state of boron and iron plasmas in the hot and dense regime. Furthermore, comparisons with classical theories were performed on structural and dynamical properties. Finally, equation of state and transport coefficients mixing laws were studied by direct simulation of a plasma composed of deuterium and copper.Les propriétés microscopiques des plasmas chauds et denses --- plasmas couplés --- constituent un domaine d'étude essentiellement exploré par les théories de physique classique telles que le plasma à une composante, théorie basée sur un certain nombre de paramètres ajustables, en particulier l'ionisation.Nous nous proposons, dans ce travail de thèse, d'aborder cette thématique par une approche sans paramètre basée sur le couplage cohérent de la dynamique moléculaire classique des noyaux et de la théorie de la fonctionnelle de la densité sans orbitale pour les électrons. La composante électronique est ainsi représentée par une énergie libre semi-classique dont la seule variable pertinente est la densité locale.Ce modèle a été validé par comparaison avec une méthode ab initio, la dynamique moléculaire quantique, qui décrit également le fluide électronique par une énergie libre mais exprimée au moyen d'une théorie quantique de particules indépendantes. Suite à cette validation, la dynamique moléculaire sans orbitale a été mise à profit pour évaluer l'équation d'état, à l'équilibre thermodynamique, de plasmas de bore et de fer à très haute température et densité. De plus, des comparaisons avec les modèles classiques ont été entreprises sur les propriétés structurales et dynamiques. Enfin, les lois de mélange d'équations d'état ou de coefficient de transport ont été vérifiées par simulation directe d'un plasma constitué de deutérium et de cuivre