'Blavatnik School of Government, University of Oxford'
Abstract
The spinel FeSc2S4 has been proposed to realize a near-critical spin-orbital singlet (SOS) state, where entangled spin and orbital moments fluctuate in a global singlet state on the verge of spin and orbital order. Here we report powder inelastic neutron scattering measurements that observe the full bandwidth of magnetic excitations and we find that spin-orbital triplon excitations of an SOS state can capture well key aspects of the spectrum in both zero and applied magnetic fields up to 8.5 T. The observed shift of low-energy spectral weight to higher energies upon increasing applied field is naturally explained by the entangled spin-orbital character of the magnetic states, a behaviour that is in strong contrast to spin-only singlet ground state systems, where the spin gap decreases upon increasing applied field. The deposited package contains x-ray and neutron powder diffraction, susceptibility and inelastic neutron scattering data to characterize the crystal structure and magnetic dynamics in applied field in the spinel material FeSc2S