Spectroscopie Laser avec des cavités résonantes de haute finesse couplées à un peigne de fréquences : ML-CEAS et vernier effet techniques. Applications à la mesure in situ de molécules réactives dans les domaines UV et visible.

Abstract

The atmospheric chemistry community suffers a lack of fast, reliable and space resolved measurements for a wide set of reactive molecules (e.g. radicals such as OH, NO3, BrO, IO, etc). Due to their high reactivity, these molecules largely control the lifetime and concentration of numerous key atmospheric species, and may have an important impact on the climate. The concentrations of such radicals are extremely low (ppbv or less) and highly variable in time and space, which imposes a real challenge during the detection. In the first part of this thesis, a compact, robust and transportable UV spectrometer is developed, exploiting the Mode-Locked Cavity Enhanced Absorption Spectroscopy (ML-CEAS) technique to measure pptv and sub-pptv levels of atmospherically important reactive molecules, in particular, halogen oxide radicals, to respond to the emerging needs. The ML-CEAS technique is based on coupling a Mode-Locked femtosecond laser to a high finesse optical cavity, which acts as a photon trap to increase the interaction between the light and the intracavity gas sample, which highly enhances the absorption sensitivity. The detection limit obtained for the IO radical is 20 ppqv (part per quadrillion), which is an impressive result. In the second part of this thesis, a new spectroscopic technique is developed, called Vernier effect, which is also based on the interaction between a mode-locked femtosecond laser with a high finesse optical cavity. This technique provides detection sensitivity similar to that of ML-CEAS technique, but the advantage is that the number of the spectral elements is given by the cavity finesse, so it can reach ten thousands, as well as this technique has a simple setup, where the spectrograph is replaced by a photodiode. Additionally, the time required to measure one output absorption spectrum can be less than 1 ms.La communauté de la chimie atmosphérique souffre d'un manque de mesures rapides, fiables résolues spatialement et temporellement pour un large éventail de molécules réactives (radicaux tels que NO2, OH, BrO, IO, etc). En raison de leur forte réactivité, ces molécules contrôlent largement la durée de vie et la concentration de nombreuses espèces clés dans l'atmosphère, et peuvent avoir un impact important sur le climat. Les concentrations de ces radicaux sont extrêmement faibles (ppbv ou moins) et très variable dans le temps et dans l'espace, ce qui impose un véritable défi lors de la détection. Dans la première partie de cette thèse, un spectromètre UV robuste, compacte et transportable est développé, exploitant la technique ML-CEAS pour mesurer à des niveaux très faibles (pptv et même en dessous) des molécules réactives d'importance atmosphérique, en particulier, les radicaux d'oxyde d'halogènes, afin de répondre aux besoins émergents. La technique ML-CEAS est basée sur le couplage d'un laser femtoseconde à blocage de modes à une cavité optique de haute finesse, qui agit comme un piège à photons pour augmenter l'interaction entre la lumière et l'échantillon de gaz intracavité. Cela permet d'améliorer fortement la sensibilité d'absorption. La limite de détection obtenue pour le radical IO est de 20 ppqv pour un temps d'acquisition de 5 minutes, ce qui est un résultat impressionnant. Dans la deuxième partie de cette thèse, une nouvelle technique spectroscopique est développée appelée effet Vernier, qui est également basé sur l'interaction entre un laser femtoseconde à blocage de mode et une cavité optique de haute finesse. Cette technique fournit une sensibilité de détection similaire à la technique ML-CEAS, mais l'avantage est que le nombre des éléments spectraux est donné par la finesse de la cavité optique et donc peut atteindre plusieurs dizaines de milliers. De plus, cette configuration simplifie le montage expérimental par la suppression du spectrographe qui est remplacé par une simple photodiode. Le temps d'acquisition d'un spectre peut être aussi réduit à moins d' 1 ms

    Similar works

    Full text

    thumbnail-image