Worldline quantum inequalities provide lower bounds on weighted averages of
the renormalised energy density of a quantum field along the worldline of an
observer. In the context of real, linear scalar field theory on an arbitrary
globally hyperbolic spacetime, we establish a worldline quantum inequality on
the normal ordered energy density, valid for arbitrary smooth timelike
trajectories of the observer, arbitrary smooth compactly supported weight
functions and arbitrary Hadamard quantum states. Normal ordering is performed
relative to an arbitrary choice of Hadamard reference state. The inequality
obtained generalises a previous result derived for static trajectories in a
static spacetime. The underlying argument is straightforward and is made
rigorous using the techniques of microlocal analysis. In particular, an
important role is played by the characterisation of Hadamard states in terms of
the microlocal spectral condition. We also give a compact form of our result
for stationary trajectories in a stationary spacetime.Comment: 19pp, LaTeX2e. The statement of the main result is changed slightly.
Several typos fixed, references added. To appear in Class Quantum Gra