Abstract

Combining the second-order entropy flow vector of the causal Israel-Stewart theory with the conformal Killing-vector property of ui/Tu_{i}/T, where uiu_{i} is the four-velocity of the medium and T its equilibrium temperature, we investigate generalized equilibrium states for cosmological fluids with nonconserved particle number. We calculate the corresponding equilibrium particle production rate and show that this quantity is reduced compared with the results of the previously studied first-order theory. Generalized equilibrium for massive particles turns out to be compatible with a dependence ρa2\rho \propto a ^{-2} of the fluid energy density ρ\rho on the scale factor a of the Robertson-Walker metric and may be regarded as a realization of so-called K-matter.Comment: 17 pages, iopfts.tex file, submitted to Class. Quantum Gra

    Similar works

    Available Versions

    Last time updated on 04/12/2019