Abstract

A conceptual scheme of a hybrid-emulsion spectrometer for investigating various channels of neutrino oscillations is proposed. The design emphasizes detection of τ\tau leptons by detached vertices, reliable identification of electrons, and good spectrometry for all charged particles and photons. A distributed target is formed by layers of low-Z material, emulsion-plastic-emulsion sheets, and air gaps in which τ\tau decays are detected. The tracks of charged secondaries, including electrons, are momentum-analyzed by curvature in magnetic field using hits in successive thin layers of emulsion. The τ\tau leptons are efficiently detected in all major decay channels, including \xedec. Performance of a model spectrometer, that contains 3 tons of nuclear emulsion and 20 tons of passive material, is estimated for different experimental environments. When irradiated by the νμ\nu_\mu beam of a proton accelerator over a medium baseline of 1 \sim 1 km/GeV, the spectrometer will efficiently detect either the \omutau and \omue transitions in the mass-difference region of Δm21\Delta m^2 \sim 1 eV2^2, as suggested by the results of LSND. When exposed to the neutrino beam of a muon storage ring over a long baseline of \sim 10-20 km/GeV, the model detector will efficiently probe the entire pattern of neutrino oscillations in the region Δm2102103\Delta m^2 \sim 10^{-2}-10^{-3} eV2^2, as suggested by the data on atmospheric neutrinos.Comment: 34 pages, 8 figure

    Similar works