OTFTs de type N à base de semiconducteurs π-conjugués : fabrication, performance et stabilité

Abstract

The main goal of this present work consists in the fabrication and optimization of N type organic field effect transistors. Bottom Gate Bottom Contact transistors are performed at low temperature T<120°C. Three different electro-deficient organic molecules are thermally evaporated and used as active layer. OTFTs based on LPP core molecule present low field effect mobility around 10-5cm2/V.s. The optimization study investigated on deposition parameters of this molecule on OTFTs performances does not allow improving this mobility. Moreover gate bias stress measurements reveal important instabilities related to this molecule. Indenfluorene derivatives core (IF) based OTFTs show better performances. Field effect mobility µFE=2.1x10-4 cm2/V is reached using IF(CN2)2 meta in optimized deposition conditions and µFE=1x10-2 cm2/V.s is obtained using IF(CN2)2 para after annealing treatment. The investigated gate bias stress study highlights the good electrical stability of IF(CN2)2 para based OTFTs. Temperature measurements allow us studying the charge transport phenomenon in these indenofluorene derivatives. Fabricated N-type OTFTs are used to perform a first electronic circuit that consists in a logic gate (invertor).Finally this low temperature process led us to achieve OTFTs devices on flexible substrates (PEN).L'objectif de ce travail de recherche est l'élaboration et l'optimisation de transistors à effet de champ organiques de type N (OTFTs). Des transistors en structure Bottom Gate Bottom Contact sont fabriqués à basse température T<120°C. Trois différentes molécules organiques conductrices d'électrons, déposées par évaporation thermiques, sont utilisées pour la couche active. Les OTFTs à base de la première molécule à corps LPP présentent de faibles mobilités à effet de champ de l'ordre de 10-5cm2/V.s. L'étude d'optimisation menée sur les conditions de dépôt de cette dernière n'a pas permis d'améliorer ses performances électriques. L'étude de stabilité électrique ''Gate Bias Stress'' a mis en évidence les instabilités de cette molécule. Les OTFTs à base des deux dérivés indénofluorènes (IF) possèdent des mobilités plus importantes. Dans les conditions optimales la molécule IF(CN2)2 méta permet d'atteindre une mobilité d'effet de champ µFE=2.1x10-4 cm2/V, alors que la molécule IF(CN2)2 para permet d'obtenir des mobilités µFE=1x10-2cm2/V.s après recuit. L'étude de stabilité électrique a mis en évidence une meilleure stabilité des OTFTs à base de IF(CN2)2 para. Une étude des phénomènes de transport de charges est menée pour les deux types de molécules. Les OTFTs de type N réalisés sont utilisés pour la réalisation d'un circuit logique de type inverseur pseudo-CMOS. Finalement, ce procédé basse température nous a permis de réaliser des OTFTs sur substrat flexible

    Similar works