research

Phase diagram of the mean field model of simplicial gravity

Abstract

We discuss the phase diagram of the balls in boxes model, with a varying number of boxes. The model can be regarded as a mean-field model of simplicial gravity. We analyse in detail the case of weights of the form p(q)=qβp(q) = q^{-\beta}, which correspond to the measure term introduced in the simplicial quantum gravity simulations. The system has two phases~: {\em elongated} ({\em fluid}) and {\em crumpled}. For β(2,)\beta\in (2,\infty) the transition between these two phases is first order, while for β(1,2]\beta \in (1,2] it is continuous. The transition becomes softer when β\beta approaches unity and eventually disappears at β=1\beta=1. We then generalise the discussion to an arbitrary set of weights. Finally, we show that if one introduces an additional kinematic bound on the average density of balls per box then a new {\em condensed} phase appears in the phase diagram. It bears some similarity to the {\em crinkled} phase of simplicial gravity discussed recently in models of gravity interacting with matter fields.Comment: 15 pages, 5 figure

    Similar works