A fuzzy version of the ordinary round 2-sphere has been constructed with an
invariant curvature. We here consider linear connections on arbitrary fuzzy
surfaces of genus zero. We shall find as before that they are more or less
rigidly dependent on the differential calculus used but that a large number of
the latter can be constructed which are not covariant under the action of the
rotation group. For technical reasons we have been forced to limit our
considerations to fuzzy surfaces which are small perturbations of the fuzzy
sphere.Comment: 11 pages, Late