Nanoscale axial position and orientation measurement of hexagonal boron nitride quantum emitters using a tunable nanophotonic environment

Abstract

Color centers in hexagonal boron nitride (hBN) have emerged as promising candidates for single-photon emitters (SPEs) due to their bright emission characteristics and potential for high temperature operation, but precisely resolving emitter location is an important outstanding issue for many applications. While single-molecule super-resolution microscopy schemes can resolve emitter lateral position at the nanometer scale, complete determination of both axial position and three-dimensional dipole orientation (θ, φ) of these quantum emitters is a fundamental challenge. We report a method for determining both the axial position and three-dimensional orientation of SPEs in \textit{h}BN by tuning the photonic local density of states, using a vanadium dioxide (VO₂) phase change material. Using this method, we were able to locate several specific quantum emitters at an axial distance of ~ 20 nm from the hBN/VO₂ interface while also determining their full dipolar orientation (θ, φ). Our approach may serve as a practical method to deterministically couple quantum emitters in hBN and other materials to photonic nanostructures, for applications in integrated quantum photonics

    Similar works