Abstract

We discuss the new class of static axially symmetric black hole solutions obtained recently in Einstein-Yang-Mills and Einstein-Yang-Mills-dilaton theory. These black hole solutions are asymptotically flat and they possess a regular event horizon. The event horizon is almost spherically symmetric with a slight elongation along the symmetry axis. The energy density of the matter fields is angle-dependent at the horizon. The static axially symmetric black hole solutions satisfy a simple relation between mass, dilaton charge, entropy and temperature. The black hole solutions are characterized by two integers, the winding number nn and the node number kk of the purely magnetic gauge field. With increasing node number the magnetically neutral black hole solutions form sequences tending to limiting solutions with magnetic charge nn, corresponding to Einstein-Maxwell-dilaton black hole solutions for finite dilaton coupling constant and to Reissner-Nordstr\o m black hole solutions for vanishing dilaton coupling constant.Comment: 41 pages including 45 postscript figures, RevTex forma

    Similar works

    Full text

    thumbnail-image

    Available Versions