research

Canonical Realizations of Doubly Special Relativity

Abstract

Doubly Special Relativity is usually formulated in momentum space, providing the explicit nonlinear action of the Lorentz transformations that incorporates the deformation of boosts. Various proposals have appeared in the literature for the associated realization in position space. While some are based on noncommutative geometries, others respect the compatibility of the spacetime coordinates. Among the latter, there exist several proposals that invoke in different ways the completion of the Lorentz transformations into canonical ones in phase space. In this paper, the relationship between all these canonical proposals is clarified, showing that in fact they are equivalent. The generalized uncertainty principles emerging from these canonical realizations are also discussed in detail, studying the possibility of reaching regimes where the behavior of suitable position and momentum variables is classical, and explaining how one can reconstruct a canonical realization of doubly special relativity starting just from a basic set of commutators. In addition, the extension to general relativity is considered, investigating the kind of gravity's rainbow that arises from this canonical realization and comparing it with the gravity's rainbow formalism put forward by Magueijo and Smolin, which was obtained from a commutative but noncanonical realization in position space.Comment: 18 pages, accepted for publication in International Journal of Modern Physics

    Similar works

    Available Versions

    Last time updated on 16/02/2019