research

Towards a wave-extraction method for numerical relativity. V. Extracting the Weyl scalars in the quasi-Kinnersley tetrad from spatial data

Abstract

We extract the Weyl scalars Ψ0\Psi_0 and Ψ4\Psi_4 in the quasi-Kinnersley tetrad by finding initially the (gauge--, tetrad--, and background--independent) transverse quasi-Kinnersley frame. This step still leaves two undetermined degrees of freedom: the ratio Ψ0/Ψ4|\Psi_0|/|\Psi_4|, and one of the phases (the product Ψ0Ψ4|\Psi_0|\cdot |\Psi_4| and the {\em sum} of the phases are determined by the so-called BB radiation scalar). The residual symmetry ("spin/boost") can be removed by gauge fixing of spin coefficients in two steps: First, we break the boost symmetry by requiring that ρ\rho corresponds to a global constant mass parameter that equals the ADM mass (or, equivalently in perturbation theory, that ρ\rho or μ\mu equal their values in the no-radiation limits), thus determining the two moduli of the Weyl scalars Ψ0,Ψ4|\Psi_0|, |\Psi_4|, while leaving their phases as yet undetermined. Second, we break the spin symmetry by requiring that the ratio π/τ\pi/\tau gives the expected polarization state for the gravitational waves, thus determining the phases. Our method of gauge fixing--specifically its second step--is appropriate for cases for which the Weyl curvature is purely electric. Applying this method to Misner and Brill--Lindquist data, we explicitly find the Weyl scalars Ψ0\Psi_0 and Ψ4\Psi_4 perturbatively in the quasi-Kinnersley tetrad.Comment: 13 page

    Similar works

    Available Versions

    Last time updated on 02/01/2020