In many different ways, Deformed Special Relativity (DSR) has been argued to
provide an effective limit of quantum gravity in almost-flat regime.
Unfortunately DSR is up to now plagued by many conceptual problems (in
particular how it describes macroscopic objects) which forbids a definitive
physical interpretation and clear predictions. Here we propose a consistent
framework to interpret DSR. We extend the principle of relativity: the same way
that Special Relativity showed us that the definition of a reference frame
requires to specify its speed, we show that DSR implies that we must also take
into account its mass. We further advocate a 5-dimensional point of view on DSR
physics and the extension of the kinematical symmetry from the Poincare group
to the Poincare-de Sitter group (ISO(4,1)). This leads us to introduce the
concept of a pentamomentum and to take into account the renormalization of the
DSR deformation parameter kappa. This allows the resolution of the "soccer ball
problem" (definition of many-particle-states) and provides a physical
interpretation of the non-commutativity and non-associativity of the addition
the relativistic quadrimomentum.Comment: 8 pages, short version of gr-qc/0412004, Proceedings of the Second
International Workshop DICE2004 (Castello di Piombino, Tuscany) "From
Decoherence and Emergent Classicality to Emergent Quantum Mechanics