We report on three numerical experiments on the implementation of Time-Delay
Interferometry (TDI) for LISA, performed with Synthetic LISA, a C++/Python
package that we developed to simulate the LISA science process at the level of
scientific and technical requirements. Specifically, we study the laser-noise
residuals left by first-generation TDI when the LISA armlengths have a
realistic time dependence; we characterize the armlength-measurements
accuracies that are needed to have effective laser-noise cancellation in both
first- and second-generation TDI; and we estimate the quantization and
telemetry bitdepth needed for the phase measurements. Synthetic LISA generates
synthetic time series of the LISA fundamental noises, as filtered through all
the TDI observables; it also provides a streamlined module to compute the TDI
responses to gravitational waves according to a full model of TDI, including
the motion of the LISA array and the temporal and directional dependence of the
armlengths. We discuss the theoretical model that underlies the simulation, its
implementation, and its use in future investigations on system characterization
and data-analysis prototyping for LISA.Comment: 18 pages, 14 EPS figures, REVTeX 4. Accepted PRD version. See
http://www.vallis.org/syntheticlisa for information on the Synthetic LISA
software packag