Five-dimensional black holes are studied in Lovelock gravity coupled to
Hoffmann-Infeld non-linear electrodynamics. It is shown that some of these
solutions present a double peak behavior of the temperature as a function of
the horizon radius. This feature implies that the evaporation process, though
drastic for a period, leads to an eternal black hole remnant. Moreover, the
form of the caloric curve corresponds to the existence of a plateau in the
evaporation rate, which implies that black holes of intermediate scales turn
out to be unstable. The geometrical aspects, such as the absence of conical
singularity, the structure of horizons, etc. are also discussed. In particular,
solutions that are asymptotically AdS arise for special choices of the
parameters, corresponding to charged solutions of five-dimensional Chern-Simons
gravity.Comment: 6 pages, 5 figures, Revtex4. References added and comments clarified;
version accepted for publicatio