research

Static, spherically symmetric solutions of Yang-Mills-Dilaton theory

Abstract

Static, spherically symmetric solutions of the Yang-Mills-Dilaton theory are studied. It is shown that these solutions fall into three different classes. The generic solutions are singular. Besides there is a discrete set of globally regular solutions further distinguished by the number of nodes of their Yang-Mills potential. The third class consists of oscillating solutions playing the role of limits of regular solutions, when the number of nodes tends to infinity. We show that all three sets of solutions are non-empty. Furthermore we give asymptotic formulae for the parameters of regular solutions and confront them with numerical results

    Similar works

    Full text

    thumbnail-image

    Available Versions