CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
中医健康状态辨识方法的探索
Authors
张佳
李灿东
+3 more
李绍滋
辛基梁
雷黄伟
Publication date
1 July 2019
Publisher
Abstract
目的:探索中医健康状态辨识的分类算法模型,为中医健康管理提供核心技术。方法:基于Matlab2017b环境,采用BP-MLL神经网络、决策树、支持向量机(SVM)和K最近邻(KNN)等学习算法,对1 146例样本分组建立训练和测试数据,以626项观察参数为输入,53项状态参数为输出进行实验。结果:最优的平均精度依次为BP-MLL神经网络(82.32%)、SVM(67.24%)、决策树(48.18%)、KNN(34.69%)。BP-MLL神经网络性能最优。结论:基于BP-MLL神经网络分类算法在中医健康状态辨识中的应用具有较高的准确性和方法学上的可行性
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Xiamen University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.xmu.edu.cn:2288/175...
Last time updated on 20/11/2020