CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Improving learning automata-based routing in Wireless Sensor Networks
Authors
Ehsan Ahvar
Shohreh Ahvar
+4 more
Eva Marín Tordera
Xavier Masip Bruin
René Serral Gracià
Marcelo Yannuzzi
Publication date
1 January 2012
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Recent research in the field of Wireless Sensor Networks (WSNs) has demonstrated the advantages of using learning automata theory to steer the routing decisions made by the sensors in the network. These advantages include aspects such as energy saving, energy balancing, increased lifetime, the selection of relatively short paths, as well as combinations of these and other goals. In this paper, we propose a very simple yet effective technique, which can be easily combined with a learning automaton to dramatically improve the performance of the routing process obtained with the latter. As a proof-of-concept, we focus on a typical learning automata-based routing process, which aims at finding a good trade off between the energy consumed and the number of hops along the paths chosen. In order to assess the performance of this routing process, we apply it on a WSN scenario where a station S gathers data from the sensors. In this typical WSN setting, we show that our combined technique can significantly improve the decisions made with the automata; and more importantly, even though the proof-of-concept particularizes somehow the automata and their behavior, the technique described in this paper is general in scope, and therefore can be applied under different routing methods and settings using learning automata.This work was supported in part by the Spanish Ministry of Science and Innovation under contract TEC2009-07041, and by the Catalan Government under contract 2009 SGR1508.Peer ReviewedPostprint (author's final draft
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Fglocom.2012...
Last time updated on 22/07/2021
UPCommons. Portal del coneixement obert de la UPC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/331...
Last time updated on 19/11/2020