research

Does asymptotic simplicity allow for radiation near spatial infinity?

Abstract

A representation of spatial infinity based in the properties of conformal geodesics is used to obtain asymptotic expansions of the gravitational field near the region where null infinity touches spatial infinity. These expansions show that generic time symmetric initial data with an analytic conformal metric at spatial infinity will give rise to developments with a certain type of logarithmic singularities at the points where null infinity and spatial infinity meet. These logarithmic singularities produce a non-smooth null infinity. The sources of the logarithmic singularities are traced back down to the initial data. It is shown that is the parts of the initial data responsible for the non-regular behaviour of the solutions are not present, then the initial data is static to a certain order. On the basis of these results it is conjectured that the only time symmetric data sets with developments having a smooth null infinity are those which are static in a neighbourhood of infinity. This conjecture generalises a previous conjecture regarding time symmetric, conformally flat data. The relation of these conjectures to Penrose's proposal for the description of the asymptotic gravitational field of isolated bodies is discussed.Comment: 22 pages, 4 figures. Typos and grammatical mistakes corrected. Version to appear in Comm. Math. Phy

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019