CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures
Authors
Seung Choi
Sanga Han
+7 more
Yuhwan Hyeon
Jung Ho Kim
Jaewoo Lee
Sung Moon
Min Park
Hamzeh Qutaish
Dongmok Whang
Publication date
1 January 2020
Publisher
'Sociological Research Online'
Abstract
© 2020 Elsevier B.V. Due to the increasing demands for energy storage devices with higher energy density, lithium (Li) metal is considered to be the ultimate choice as an anode material because it has a high theoretical capacity (3860 mAh g−1) and the lowest reduction potential (−3.04 V versus standard hydrogen electrode) among all the alkali metals. Despite these advantages, repeated Li plating/stripping during cell operation leads to dendritic Li and the formation of irreversible Li (dead Li), leading to internal short-circuits and capacity fading. These fundamental problems cause safety issues and cell failure, so they must be resolved to commercialize Li-metal anode. Many in-depth studies are ongoing to solve these drawbacks through a variety of approaches, such as the formation of artificial solid-electrolyte interphase (SEI), inserting an interfacial layer between the electrolyte and electrode, demonstrating three-dimensional structured electrodes, and using stable host structures to store Li-metal. In this Review, we focus on using host materials to store Li-metal among various strategies, which may be regarded as an alternative method but is very feasible. Also, we propose porous carbon materials derived from zeolitic imidazolate frameworks (ZIFs) as the host materials due to their suitable properties for Li-metal storage. To advance progress towards practical application, the Li-metal storage capacity of porous materials is mathematically inferred, and further strategies are discussed for improving the storage capacity in this regard. Finally, we presented a perspective that paves the way for applying host materials to anodes of practical Li-metal battery
Similar works
Full text
Available Versions
Research Online
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ro.uow.edu.au:eispapers1-5...
Last time updated on 19/11/2020