Unlike ground-based interferometric gravitational wave detectors, large
space-based systems will not be rigid structures. When the end-stations of the
laser interferometer are freely flying spacecraft, the armlengths will change
due to variations in the spacecraft positions along their orbital trajectories,
so the precise equality of the arms that is required in a laboratory
interferometer to cancel laser phase noise is not possible. However, using a
method discovered by Tinto and Armstrong, a signal can be constructed in which
laser phase noise exactly cancels out, even in an unequal arm interferometer.
We examine the case where the ratio of the armlengths is a variable parameter,
and compute the averaged gravitational wave transfer function as a function of
that parameter. Example sensitivity curve calculations are presented for the
expected design parameters of the proposed LISA interferometer, comparing it to
a similar instrument with one arm shortened by a factor of 100, showing how the
ratio of the armlengths will affect the overall sensitivity of the instrument.Comment: 14 pages, 7 figures, REVTeX