We present the details of an algorithm for the global evolution of
asymptotically flat, axisymmetric spacetimes, based upon a characteristic
initial value formulation using null cones as evolution hypersurfaces. We
identify a new static solution of the vacuum field equations which provides an
important test bed for characteristic evolution codes. We also show how
linearized solutions of the Bondi equations can be generated by solutions of
the scalar wave equation, thus providing a complete set of test beds in the
weak field regime. These tools are used to establish that the algorithm is
second order accurate and stable, subject to a Courant-Friedrichs-Lewy
condition. In addition, the numerical versions of the Bondi mass and news
function, calculated at scri on a compactified grid, are shown to satisfy the
Bondi mass loss equation to second order accuracy. This verifies that numerical
evolution preserves the Bianchi identities. Results of numerical evolution
confirm the theorem of Christodoulou and Klainerman that in vacuum, weak
initial data evolve to a flat spacetime. For the class of asymptotically flat,
axisymmetric vacuum spacetimes, for which no nonsingular analytic solutions are
known, the algorithm provides highly accurate solutions throughout the regime
in which neither caustics nor horizons form.Comment: 25 pages, 6 figure