research

Efficient Algorithms for Computing Rational First Integrals and Darboux Polynomials of Planar Polynomial Vector Fields

Abstract

International audienceWe present fast algorithms for computing rational first integrals with bounded degree of a planar polynomial vector field. Our approach builds upon a method proposed by Ferragut and Giacomini, whose main ingredients are the calculation of a power series solution of a first order differential equation and the reconstruction of a bivariate polynomial annihilating this power series. We provide explicit bounds on the number of terms needed in the power series. This enables us to transform their method into a certified algorithm computing rational first integrals via systems of linear equations. We then significantly improve upon this first algorithm by building a probabilistic algorithm with arithmetic complexity O˜(N2ω)\~O(N^{2 \omega}) and a deterministic algorithm solving the problem in at most O˜(d2N2ω+1)\~O(d^2N^{2 \omega+1}) arithmetic operations, where~NN denotes the given bound for the degree of the rational first integral, and where dNd \leq N is the degree of the vector field, and ω\omega the exponent of linear algebra. We also provide a fast heuristic variant which computes a rational first integral, or fails, in O˜(Nω+2)\~O(N^{\omega+2}) arithmetic operations. By comparison, the best previous algorithm uses at least dω+1N4ω+4d^{\omega+1}\, N^{4\omega +4} arithmetic operations. We then show how to apply a similar method to the computation of Darboux polynomials. The algorithms are implemented in a Maple package RationalFirstIntegrals which is available to interested readers with examples showing its efficiency

    Similar works