research

Weaving Concurrency in eXecutable Domain-Specific Modeling Languages

Abstract

International audienceThe emergence of modern concurrent systems (e.g., Cyber-Physical Systems or the Internet of Things) and highly-parallel platforms (e.g., many-core, GPGPU pipelines, and distributed platforms) calls for Domain-Specific Modeling Languages (DSMLs) where concurrency is of paramount importance. Such DSMLs are intended to propose constructs with rich concurrency semantics, which allow system designers to precisely define and analyze system behaviors. However , specifying and implementing the execution semantics of such DSMLs can be a difficult, costly and error-prone task. Most of the time the concurrency model remains implicit and ad-hoc, embedded in the underlying execution environment. The lack of an explicit concurrency model prevents: the precise definition, the variation and the complete understanding of the semantics of the DSML, the effective usage of concurrency-aware analysis techniques, and the exploitation of the concurrency model during the system refinement (e.g., during its allocation on a specific platform). In this paper, we introduce a concurrent executable metamodeling approach, which supports a modular definition of the execution semantics , including the concurrency model, the semantic rules, and a well-defined and expressive communication protocol between them. Our approach comes with a dedicated metalanguage to specify the communication protocol, and with an execution environment to simulate executable models. We illustrate and validate our approach with an implementation of fUML, and discuss the modularity and applicability of our approach

    Similar works