Motivated by questions in lossy data compression and by theoretical
considerations, we examine the problem of estimating the rate-distortion
function of an unknown (not necessarily discrete-valued) source from empirical
data. Our focus is the behavior of the so-called "plug-in" estimator, which is
simply the rate-distortion function of the empirical distribution of the
observed data. Sufficient conditions are given for its consistency, and
examples are provided to demonstrate that in certain cases it fails to converge
to the true rate-distortion function. The analysis of its performance is
complicated by the fact that the rate-distortion function is not continuous in
the source distribution; the underlying mathematical problem is closely related
to the classical problem of establishing the consistency of maximum likelihood
estimators. General consistency results are given for the plug-in estimator
applied to a broad class of sources, including all stationary and ergodic ones.
A more general class of estimation problems is also considered, arising in the
context of lossy data compression when the allowed class of coding
distributions is restricted; analogous results are developed for the plug-in
estimator in that case. Finally, consistency theorems are formulated for
modified (e.g., penalized) versions of the plug-in, and for estimating the
optimal reproduction distribution.Comment: 18 pages, no figures [v2: removed an example with an error; corrected
typos; a shortened version will appear in IEEE Trans. Inform. Theory