thesis

Fire regimes in eastern coastal fynbos: drivers, ecology and management

Abstract

Conventional knowledge of fynbos fire ecology is based on the summer-autumn fire regimes of the western Cape Floral Kingdom (CFK) where the climate is Mediterranean. However, the climate in the eastern coastal-CFK is milder and rainfall occurs year-round, with presumed effects on fire regimes. The Garden Route National Park (GRNP) has recently been established in the region, in a landscape where indigenous forests, fire-prone fynbos shrublands and fire-sensitive plantations of invasive alien trees are interspersed. The park faces considerable challenges related to the management of fire, including significant pressure from the adjacent plantation industry to reduce wildfire hazard by burning fynbos at short intervals, and high levels of invasion by alien trees (largely Pinus species originating from plantations). This study sought to improve understanding of fire regimes in eastern coastal fynbos shrublands, and to provide guidelines for ecologically sound management of fire in the area. My approach entailed (i) an assessment of the context within which fire management was practiced during the past century; (ii) characterisation of the recent fire history and fire regime (1900–2010); (iii) characterisation of the seasonality of fire weather and lightning; (iv) estimation of minimum fire return intervals (FRIs) from juvenile periods and post-fire recruitment success of overstorey proteoids (non-sprouting, slow-maturing, serotinous Proteaceae); and (v) determination of the ecologically appropriate fire season from post-fire recruitment seasonality of proteoids. I established that historically, plantation protection enjoyed priority over fynbos conservation in the area that is now the GRNP. Fynbos close to plantations has most likely been compromised by frequent and low-intensity burning in the past, as well as by invasion by alien trees. In terms of area burnt (1900–2010), natural (lightning-ignited) fires dominated the fire regime, particularly in the east, whereas prescribed burning was relatively unimportant. Typical fire return intervals (FRIs; 8–26 years; 1980–2010) were comparable to those in other fynbos protected areas and appeared to be shorter in the eastern Tsitsikamma than in the western Outeniqua halves of the study area. Proteaceae juvenile periods (4–9 years) and post-fire recruitment success (following fires in ≥7 year-old vegetation) suggested that for biodiversity conservation purposes, FRIs should be no less than nine years in moist, productive fynbos. Increases in the total area burnt annually (since 1980) were correlated with long-term increases in average fire danger weather, suggesting that fire regime changes may be related to global change. Collectively, findings on the seasonality of actual fires and the seasonality of fire danger weather, lightning, and post-fire proteoid recruitment suggested that fires in eastern coastal fynbos are not limited to any particular season, and for this reason managers do not need to be concerned if fires occur in any season. The ecological requirements for higher fire intensity may nonetheless be constrained by a need for safety. I articulated these findings into ecological thresholds pertaining to the different elements of the fire regime in eastern coastal fynbos, to guide adaptive management of fire in the Garden Route National Park. I also recommended a fire management strategy for the park to address the aforementioned operational considerations within the constraints posed by ecological thresholds. Finally, I highlighted further research and monitoring needs

    Similar works