We provide here a computational interpretation of first-order logic based on
a constructive interpretation of satisfiability w.r.t. a fixed but arbitrary
interpretation. In this approach the formulas themselves are programs. This
contrasts with the so-called formulas as types approach in which the proofs of
the formulas are typed terms that can be taken as programs. This view of
computing is inspired by logic programming and constraint logic programming but
differs from them in a number of crucial aspects.
Formulas as programs is argued to yield a realistic approach to programming
that has been realized in the implemented programming language ALMA-0 (Apt et
al.) that combines the advantages of imperative and logic programming. The work
here reported can also be used to reason about the correctness of non-recursive
ALMA-0 programs that do not include destructive assignment.Comment: 34 pages, appears in: The Logic Programming Paradigm: a 25 Years
Perspective, K.R. Apt, V. Marek, M. Truszczynski and D.S. Warren (eds),
Springer-Verlag, Artificial Intelligence Serie