This paper examines information-theoretic questions regarding the difficulty
of compressing data versus the difficulty of decompressing data and the role
that information loss plays in this interaction. Finite-state compression and
decompression are shown to be of equivalent difficulty, even when the
decompressors are allowed to be lossy.
Inspired by Kolmogorov complexity, this paper defines the optimal
*decompression *ratio achievable on an infinite sequence by finite-state
decompressors (that is, finite-state transducers outputting the sequence in
question). It is shown that the optimal compression ratio achievable on a
sequence S by any *information lossless* finite state compressor, known as the
finite-state dimension of S, is equal to the optimal decompression ratio
achievable on S by any finite-state decompressor. This result implies a new
decompression characterization of finite-state dimension in terms of lossy
finite-state transducers.Comment: We found that Theorem 3.11, which was basically the motive for this
paper, was already proven by Sheinwald, Ziv, and Lempel in 1991 and 1995
paper