research

Online Learning of Aggregate Knowledge about Non-linear Preferences Applied to Negotiating Prices and Bundles

Abstract

In this paper, we consider a form of multi-issue negotiation where a shop negotiates both the contents and the price of bundles of goods with his customers. We present some key insights about, as well as a procedure for, locating mutually beneficial alternatives to the bundle currently under negotiation. The essence of our approach lies in combining aggregate (anonymous) knowledge of customer preferences with current data about the ongoing negotiation process. The developed procedure either works with already obtained aggregate knowledge or, in the absence of such knowledge, learns the relevant information online. We conduct computer experiments with simulated customers that have_nonlinear_ preferences. We show how, for various types of customers, with distinct negotiation heuristics, our procedure (with and without the necessary aggregate knowledge) increases the speed with which deals are reached, as well as the number and the Pareto efficiency of the deals reached compared to a benchmark.Comment: 10 pages, 5 eps figures, ACM Proceedings documentclass, Published in "Proc. 6th Int'l Conf. on Electronic Commerce ICEC04, Delft, The Netherlands," M. Janssen, H. Sol, R. Wagenaar (eds.). ACM Pres

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/09/2017