Evolutionary computation algorithms are increasingly being used to solve
optimization problems as they have many advantages over traditional
optimization algorithms. In this paper we use evolutionary computation to study
the trade-off between pleiotropy and redundancy in a client-server based
network. Pleiotropy is a term used to describe components that perform multiple
tasks, while redundancy refers to multiple components performing one same task.
Pleiotropy reduces cost but lacks robustness, while redundancy increases
network reliability but is more costly, as together, pleiotropy and redundancy
build flexibility and robustness into systems. Therefore it is desirable to
have a network that contains a balance between pleiotropy and redundancy. We
explore how factors such as link failure probability, repair rates, and the
size of the network influence the design choices that we explore using genetic
algorithms.Comment: 10 pages, 6 figure