Sulfide-based solid electrolytes are known to have narrow electrochemical windows which limit their practical use in all-solid-state batteries (ASSBs). Specifically, when paired with a high-voltage transition metal oxide (TMO) cathode, the electrolyte will typically undergo unwanted degradation via chemical reactions or electrochemical oxidation, especially upon charging to voltages beyond the electrochemical stability window of the electrolyte. To mitigate these undesired reactions, thin (<10 nm), conformal, ionically-conducting, and electronically-insulating oxide-based protective coating layers have been applied on the cathode, typically via a solution process. In this work, a lithium borate-based (LBO) coating, prepared instead with a dry coating process, was shown to have the same beneficial properties. As evidenced by electrochemical characterization, the developed LBO coating shows good cycling performance and even performs better than the LiNbO3 coating commonly used in the literature. This new solvent-free coating method can thus be used to fabricate longer-lasting ASSBs