We present a detailed analysis of the critical behavior close to the
Mott-Anderson transition. Our findings are based on a combination of numerical
and analytical results obtained within the framework of Typical-Medium Theory
(TMT-DMFT) - the simplest extension of dynamical mean field theory (DMFT)
capable of incorporating Anderson localization effects. By making use of
previous scaling studies of Anderson impurity models close to the
metal-insulator transition, we solve this problem analytically and reveal the
dependence of the critical behavior on the particle-hole symmetry. Our main
result is that, for sufficiently strong disorder, the Mott-Anderson transition
is characterized by a precisely defined two-fluid behavior, in which only a
fraction of the electrons undergo a "site selective" Mott localization; the
rest become Anderson-localized quasiparticles.Comment: 4+ pages, 4 figures, v2: minor changes, accepted for publication in
Phys. Rev. Let