We present memory-based learning approaches to shallow parsing and apply
these to five tasks: base noun phrase identification, arbitrary base phrase
recognition, clause detection, noun phrase parsing and full parsing. We use
feature selection techniques and system combination methods for improving the
performance of the memory-based learner. Our approach is evaluated on standard
data sets and the results are compared with that of other systems. This reveals
that our approach works well for base phrase identification while its
application towards recognizing embedded structures leaves some room for
improvement