The density of states of Dirac fermions with a random mass on a
two-dimensional lattice is considered. We give the explicit asymptotic form of
the single-electron density of states as a function of both energy and
(average) Dirac mass, in the regime where all states are localized. We make use
of a weak-disorder expansion in the parameter g/m^2, where g is the strength of
disorder and m the average Dirac mass for the case in which the evaluation of
the (supersymmetric) integrals corresponds to non-uniform solutions of the
saddle point equation. The resulting density of states has tails which deviate
from the typical pure Gaussian form by an analytic prefactor.Comment: 8 pages, REVTeX, 1 eps figure; to appear in Annalen der Physi