A high-performance inner-product processor for real and complex numbers.

Abstract

A novel, high-performance fixed-point inner-product processor based on a redundant binary number system is investigated in this dissertation. This scheme decreases the number of partial products to 50%, while achieving better speed and area performance, as well as providing pipeline extension opportunities. When modified Booth coding is used, partial products are reduced by almost 75%, thereby significantly reducing the multiplier addition depth. The design is applicable for digital signal and image processing applications that require real and/or complex numbers inner-product arithmetic, such as digital filters, correlation and convolution. This design is well suited for VLSI implementation and can also be embedded as an inner-product core inside a general purpose or DSP FPGA-based processor. Dynamic control of the computing structure permits different computations, such as a variety of inner-product real and complex number computations, parallel multiplication for real and complex numbers, and real and complex number division. The same structure can also be controlled to accept redundant binary number inputs for multiplication and inner-product computations. An improved 2's-complement to redundant binary converter is also presented

    Similar works