Computational approaches to complex biological networks

Abstract

The need of understanding and modeling the biological networks is one of the raisons d'\ueatre and of the driving forces behind the emergence of Systems Biology. Because of its holistic approach and because of the widely different level of complexity of the networks, different mathematical methods have been developed during the years. Some of these computational methods are used in this thesis in order to investigate various properties of different biological systems. The first part deals with the prediction of the perturbation of cellular metabolism induced by drugs. Using Flux Balance Analysis to describe the reconstructed genome-wide metabolic networks, we consider the problem of identifying the most selective drug synergisms for given therapeutic targets. The second part of this thesis considers gene regulatory and large social networks as signed graphs (activation/deactivation or friendship/hostility are rephrased as positive/negative coupling between spins). Using the analogy with an Ising spin glass an analysis of the energy landscape and of the content of \u201cdisorder\u201d 'is carried out. Finally, the last part concerns the study of the spatial heterogeneity of the signaling pathway of rod photoreceptors. The electrophysiological data produced by our collaborators in the Neurobiology laboratory have been analyzed with various dynamical systems giving an insight into the process of ageing of photoreceptors and into the role diffusion in the pathway

    Similar works