We apply the recently introduced distribution of sign-times (DST) to
non-equilibrium interface growth dynamics. We are able to treat within a
unified picture the persistence properties of a large class of relaxational and
noisy linear growth processes, and prove the existence of a non-trivial scaling
relation. A new critical dimension is found, relating to the persistence
properties of these systems. We also illustrate, by means of numerical
simulations, the different types of DST to be expected in both linear and
non-linear growth mechanisms.Comment: 4 pages, 5 ps figs, replaced misprint in authors nam