Adaptive Resource Allocation Strategies for Dynamic Heterogeneous Traffic in Td-cdma/Tdd Systems

Abstract

The purpose of this study was to investigate the co-channel interference present in TD-CDMA/TDD systems and TDMA/TDD systems and propose methods to avoid the co-channel interference. Time Slot Opposing algorithm which avoids co-channel interference in TD-CDMA/D-TDD system is reviewed as part of background study. The interference scenarios in TDMA/D-TDD systems are then studied and methods to avoid co-channel interference are proposed. The algorithms are then tested using real Internet data traffic to obtain a realistic analysis. Based on the background research, an extended Max {SIR} algorithm is proposed to avoid co-channel interference in TDMA/D-TDD systems. This algorithm is a centralized dynamic channel allocation algorithm that uses information from all the cells in the system to avoid co-channel interference and increase the signal power-to-interference power outage probability ratio. The proposed algorithm is then applied to a TDMA/D-TDD system that have subscribers grouped based on priority. As a last step of the research, traffic in TDMA/D-TDD systems is modeled using the ON-OFF traffic modeling and the Max {SIR} algorithm is applied. The results obtained using ON-OFF traffic modeling matched with the results obtained using analytical simulations.School of Electrical & Computer Engineerin

    Similar works