Robust vibration suppression control profile generation

Abstract

Scope and Method of Study:The control of flexible structures has been extensively studied in recent years. Flexible structures such as high-speed disk drive actuators require extremely precise positioning under very tight time constraints. Whenever a fast motion is commanded, residual vibration in the flexible structure is induced, which increases the settling time. One solution is to design a closed-loop control to damp out vibrations caused by the command inputs and disturbances to the plant. However, the resulting closed-loop response may still be too slow to provide an acceptable settling time. Also, the closed-loop control is not able to compensate for high frequency residual vibration which occurs beyond the closed-loop bandwidth. An alternative approach is to develop an appropriate reference trajectory that is able to minimize the excitation energy imparted to the system at its natural frequencies.Findings and Conclusions:A robust vibration suppression control profile is generated which suppresses all the high frequency vibrations in a flexible dynamic system. This robust control profile is the shifted time-limited version of the functions that optimally achieve the energy concentration property. The robust control profile is designed by considering the first resonance frequency. In practical system, a lower resonance frequency mode may exist which is located far from the high frequency resonance modes. In this case, a robust control profile is generated which suppresses one specific resonant mode in a flexible dynamic system. This robust control profile is a smooth function which can be used as a robust velocity profile, or as a robust shape filter to an arbitrary control command. The robustness can be arbitrarily improved, which brings about a smoother profile. Combination of high frequency vibration suppression control profile and low frequency vibration suppression control profile generates a robust vibration suppression control profile that is able to suppress all the resonant dynamics in a flexible dynamic system. The technique can be applied to both open-loop and closed-loop systems

    Similar works