research

Effect of the cluster size in modeling the H_2 desorption and dissociative adsorption on Si(001)

Abstract

Three different clusters, Si_9H_12, Si_15H_16, and Si_21H_20, are used in density-functional theory calculations in conjunction with ab initio pseudopotentials to study how the energetics of H_2 dissociativ e adsorption on and associative desorption from Si(001) depends on the cluster size. The results are compared to five-layer slab calculations using the same pseudopotentials and high qu ality plane-wave basis set. Several exchange-correlation functionals are employed. Our analysis suggests that the smaller clusters generally overestimate the activation barriers and reaction energy. The Si_21H_20 cluster, however, is found to predict reaction energetics, with E_{a}^{des}=56 +- 3 kcal/mol (2.4 +- 0.1 eV), reasonably close (though still different) to that obtained from the slab calculations. Differences in the calculated activation energies are discussed in relation to the efficiency of clusters to describe the properties of the clean Si(001)-2x1 surface.Comment: 10 pages, 6 figures, submitted to J. Chem. Phy

    Similar works