A comparison of surface moisture budget and structural equation models in high latitudes: evapotranspiration and atmospheric drivers

Abstract

Thesis (M.S.) University of Alaska Fairbanks, 2021Arctic soil moisture is one of the most impactful and unknown aspects of the Arctic climate system. As the climate changes, surface soil moisture can impact water supplies, wildfire risk, and vegetation stress, all of which have consequences for terrestrial ecosystems and human activities. The present analysis is intended to (1) document seasonal and interannual variations of surface moisture fluxes in the Arctic region and (2) clarify the drivers of variations of net Precipitation minus Evapotranspiration (P-ET) across Arctic tundra and boreal vegetation and permafrost status. Forty-five flux tower sites were examined across boreal and tundra ecosystems across the Arctic and sub-arctic. The surface moisture budget at boreal forest sites in permafrost areas generally shows a moisture deficit in late spring and early summer, followed by a moisture surplus from late summer into autumn. The annual net P-ET is generally positive but can vary interannually by more than an order of magnitude. A factor analysis found the primary drivers of variations in evapotranspiration to be radiative fluxes, air temperature, and relative humidity, while a path analysis found windspeed to have the largest independent influence on evapotranspiration. Overall, the ET at boreal forest sites shows a stronger dependence on relative humidity, and ET at tundra sites shows the stronger dependence on air temperature. These differences imply that tundra sites are more temperature-limited and boreal sites are more humidity-dependent. Relative to nearby unburned sites, the recovery time of ET after disturbance by wildfire was found to vary from several years on the Alaska tundra to nearly a decade in the Alaska boreal forest.National Science Foundation, Office of Polar Programs Grant ARC-183013

    Similar works